Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 8-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dfpred2.1 | ⊢ 𝑋 ∈ V | |
Assertion | dfpred2 | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ { 𝑦 ∣ 𝑦 𝑅 𝑋 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpred2.1 | ⊢ 𝑋 ∈ V | |
2 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
3 | iniseg | ⊢ ( 𝑋 ∈ V → ( ◡ 𝑅 “ { 𝑋 } ) = { 𝑦 ∣ 𝑦 𝑅 𝑋 } ) | |
4 | 1 3 | ax-mp | ⊢ ( ◡ 𝑅 “ { 𝑋 } ) = { 𝑦 ∣ 𝑦 𝑅 𝑋 } |
5 | 4 | ineq2i | ⊢ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ { 𝑦 ∣ 𝑦 𝑅 𝑋 } ) |
6 | 2 5 | eqtri | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ { 𝑦 ∣ 𝑦 𝑅 𝑋 } ) |