Metamath Proof Explorer


Theorem dfpred2

Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 8-Feb-2011)

Ref Expression
Hypothesis dfpred2.1 𝑋 ∈ V
Assertion dfpred2 Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ { 𝑦𝑦 𝑅 𝑋 } )

Proof

Step Hyp Ref Expression
1 dfpred2.1 𝑋 ∈ V
2 df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
3 iniseg ( 𝑋 ∈ V → ( 𝑅 “ { 𝑋 } ) = { 𝑦𝑦 𝑅 𝑋 } )
4 1 3 ax-mp ( 𝑅 “ { 𝑋 } ) = { 𝑦𝑦 𝑅 𝑋 }
5 4 ineq2i ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ { 𝑦𝑦 𝑅 𝑋 } )
6 2 5 eqtri Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ { 𝑦𝑦 𝑅 𝑋 } )