Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 13-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dfpred2.1 | ⊢ 𝑋 ∈ V | |
Assertion | dfpred3 | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpred2.1 | ⊢ 𝑋 ∈ V | |
2 | incom | ⊢ ( 𝐴 ∩ { 𝑦 ∣ 𝑦 𝑅 𝑋 } ) = ( { 𝑦 ∣ 𝑦 𝑅 𝑋 } ∩ 𝐴 ) | |
3 | 1 | dfpred2 | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ { 𝑦 ∣ 𝑦 𝑅 𝑋 } ) |
4 | dfrab2 | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } = ( { 𝑦 ∣ 𝑦 𝑅 𝑋 } ∩ 𝐴 ) | |
5 | 2 3 4 | 3eqtr4i | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } |