Metamath Proof Explorer


Theorem dfpred3

Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Hypothesis dfpred2.1 𝑋 ∈ V
Assertion dfpred3 Pred ( 𝑅 , 𝐴 , 𝑋 ) = { 𝑦𝐴𝑦 𝑅 𝑋 }

Proof

Step Hyp Ref Expression
1 dfpred2.1 𝑋 ∈ V
2 incom ( 𝐴 ∩ { 𝑦𝑦 𝑅 𝑋 } ) = ( { 𝑦𝑦 𝑅 𝑋 } ∩ 𝐴 )
3 1 dfpred2 Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ { 𝑦𝑦 𝑅 𝑋 } )
4 dfrab2 { 𝑦𝐴𝑦 𝑅 𝑋 } = ( { 𝑦𝑦 𝑅 𝑋 } ∩ 𝐴 )
5 2 3 4 3eqtr4i Pred ( 𝑅 , 𝐴 , 𝑋 ) = { 𝑦𝐴𝑦 𝑅 𝑋 }