Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 13-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | dfpred3g | ⊢ ( 𝑋 ∈ 𝑉 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predeq3 | ⊢ ( 𝑥 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
2 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑋 ) ) | |
3 | 2 | rabbidv | ⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) |
4 | 1 3 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( Pred ( 𝑅 , 𝐴 , 𝑥 ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ↔ Pred ( 𝑅 , 𝐴 , 𝑋 ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) ) |
5 | vex | ⊢ 𝑥 ∈ V | |
6 | 5 | dfpred3 | ⊢ Pred ( 𝑅 , 𝐴 , 𝑥 ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } |
7 | 4 6 | vtoclg | ⊢ ( 𝑋 ∈ 𝑉 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } ) |