Metamath Proof Explorer


Theorem dfpred3g

Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Assertion dfpred3g ( 𝑋𝑉 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = { 𝑦𝐴𝑦 𝑅 𝑋 } )

Proof

Step Hyp Ref Expression
1 predeq3 ( 𝑥 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )
2 breq2 ( 𝑥 = 𝑋 → ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑋 ) )
3 2 rabbidv ( 𝑥 = 𝑋 → { 𝑦𝐴𝑦 𝑅 𝑥 } = { 𝑦𝐴𝑦 𝑅 𝑋 } )
4 1 3 eqeq12d ( 𝑥 = 𝑋 → ( Pred ( 𝑅 , 𝐴 , 𝑥 ) = { 𝑦𝐴𝑦 𝑅 𝑥 } ↔ Pred ( 𝑅 , 𝐴 , 𝑋 ) = { 𝑦𝐴𝑦 𝑅 𝑋 } ) )
5 vex 𝑥 ∈ V
6 5 dfpred3 Pred ( 𝑅 , 𝐴 , 𝑥 ) = { 𝑦𝐴𝑦 𝑅 𝑥 }
7 4 6 vtoclg ( 𝑋𝑉 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = { 𝑦𝐴𝑦 𝑅 𝑋 } )