Metamath Proof Explorer


Theorem dfprm2

Description: The positive irreducible elements of ZZ are the prime numbers. This is an alternative way to define Prime . (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypothesis prmirred.i 𝐼 = ( Irred ‘ ℤring )
Assertion dfprm2 ℙ = ( ℕ ∩ 𝐼 )

Proof

Step Hyp Ref Expression
1 prmirred.i 𝐼 = ( Irred ‘ ℤring )
2 prmnn ( 𝑥 ∈ ℙ → 𝑥 ∈ ℕ )
3 1 prmirredlem ( 𝑥 ∈ ℕ → ( 𝑥𝐼𝑥 ∈ ℙ ) )
4 3 bicomd ( 𝑥 ∈ ℕ → ( 𝑥 ∈ ℙ ↔ 𝑥𝐼 ) )
5 2 4 biadanii ( 𝑥 ∈ ℙ ↔ ( 𝑥 ∈ ℕ ∧ 𝑥𝐼 ) )
6 elin ( 𝑥 ∈ ( ℕ ∩ 𝐼 ) ↔ ( 𝑥 ∈ ℕ ∧ 𝑥𝐼 ) )
7 5 6 bitr4i ( 𝑥 ∈ ℙ ↔ 𝑥 ∈ ( ℕ ∩ 𝐼 ) )
8 7 eqriv ℙ = ( ℕ ∩ 𝐼 )