Description: The (positive) prime elements of the integer ring are the prime numbers. (Contributed by Thierry Arnoux, 18-May-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | dfprm3 | ⊢ ℙ = ( ℕ ∩ ( RPrime ‘ ℤring ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Irred ‘ ℤring ) = ( Irred ‘ ℤring ) | |
2 | 1 | dfprm2 | ⊢ ℙ = ( ℕ ∩ ( Irred ‘ ℤring ) ) |
3 | eqid | ⊢ ( RPrime ‘ ℤring ) = ( RPrime ‘ ℤring ) | |
4 | zringpid | ⊢ ℤring ∈ PID | |
5 | 4 | a1i | ⊢ ( ⊤ → ℤring ∈ PID ) |
6 | 3 1 5 | rprmirredb | ⊢ ( ⊤ → ( Irred ‘ ℤring ) = ( RPrime ‘ ℤring ) ) |
7 | 6 | mptru | ⊢ ( Irred ‘ ℤring ) = ( RPrime ‘ ℤring ) |
8 | 7 | ineq2i | ⊢ ( ℕ ∩ ( Irred ‘ ℤring ) ) = ( ℕ ∩ ( RPrime ‘ ℤring ) ) |
9 | 2 8 | eqtri | ⊢ ℙ = ( ℕ ∩ ( RPrime ‘ ℤring ) ) |