| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ispth |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
| 2 |
|
istrl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) |
| 3 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 4 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 5 |
4
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 6 |
|
ffn |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 7 |
6
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 8 |
|
0elfz |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 10 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 11 |
10
|
biimpi |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 13 |
7 9 12
|
3jca |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 14 |
3 5 13
|
syl2anc |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) → ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 16 |
2 15
|
sylbi |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 17 |
|
fnimapr |
⊢ ( ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) |
| 18 |
16 17
|
syl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) |
| 19 |
18
|
ineq1d |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 20 |
19
|
eqeq1d |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
| 21 |
|
disj |
⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ∀ 𝑥 ∈ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ¬ 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 22 |
|
fvex |
⊢ ( 𝑃 ‘ 0 ) ∈ V |
| 23 |
|
fvex |
⊢ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ V |
| 24 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 25 |
24
|
notbid |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( ¬ 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ¬ ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 26 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 27 |
26
|
notbid |
⊢ ( 𝑥 = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ¬ 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 28 |
22 23 25 27
|
ralpr |
⊢ ( ∀ 𝑥 ∈ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ¬ 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( ¬ ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 29 |
|
df-nel |
⊢ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ¬ ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 30 |
29
|
bicomi |
⊢ ( ¬ ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 31 |
28 30
|
bianbi |
⊢ ( ∀ 𝑥 ∈ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ¬ 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 32 |
21 31
|
bitri |
⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 33 |
20 32
|
bitrdi |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 34 |
33
|
anbi2d |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ↔ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) ) |
| 35 |
|
ancom |
⊢ ( ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ ( ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 36 |
35
|
bianass |
⊢ ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ↔ ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 37 |
36
|
a1i |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ↔ ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 38 |
|
noel |
⊢ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ |
| 39 |
38
|
biantru |
⊢ ( Fun ◡ ( 𝑃 ↾ ∅ ) ↔ ( Fun ◡ ( 𝑃 ↾ ∅ ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ ) ) |
| 40 |
39
|
bicomi |
⊢ ( ( Fun ◡ ( 𝑃 ↾ ∅ ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ ) ↔ Fun ◡ ( 𝑃 ↾ ∅ ) ) |
| 41 |
40
|
a1i |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( ( Fun ◡ ( 𝑃 ↾ ∅ ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ ) ↔ Fun ◡ ( 𝑃 ↾ ∅ ) ) ) |
| 42 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ..^ 0 ) ) |
| 43 |
|
0le1 |
⊢ 0 ≤ 1 |
| 44 |
|
1z |
⊢ 1 ∈ ℤ |
| 45 |
|
0z |
⊢ 0 ∈ ℤ |
| 46 |
|
fzon |
⊢ ( ( 1 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 0 ≤ 1 ↔ ( 1 ..^ 0 ) = ∅ ) ) |
| 47 |
44 45 46
|
mp2an |
⊢ ( 0 ≤ 1 ↔ ( 1 ..^ 0 ) = ∅ ) |
| 48 |
43 47
|
mpbi |
⊢ ( 1 ..^ 0 ) = ∅ |
| 49 |
42 48
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ ) |
| 50 |
49
|
reseq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑃 ↾ ∅ ) ) |
| 51 |
50
|
cnveqd |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ◡ ( 𝑃 ↾ ∅ ) ) |
| 52 |
51
|
funeqd |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ∅ ) ) ) |
| 53 |
49
|
imaeq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑃 “ ∅ ) ) |
| 54 |
|
ima0 |
⊢ ( 𝑃 “ ∅ ) = ∅ |
| 55 |
53 54
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ ) |
| 56 |
55
|
eleq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ ) ) |
| 57 |
56
|
notbid |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ ) ) |
| 58 |
52 57
|
anbi12d |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ ( Fun ◡ ( 𝑃 ↾ ∅ ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ ) ) ) |
| 59 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 1 ... ( ♯ ‘ 𝐹 ) ) = ( 1 ... 0 ) ) |
| 60 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
| 61 |
59 60
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 1 ... ( ♯ ‘ 𝐹 ) ) = ∅ ) |
| 62 |
61
|
reseq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ( 𝑃 ↾ ∅ ) ) |
| 63 |
62
|
cnveqd |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ◡ ( 𝑃 ↾ ∅ ) ) |
| 64 |
63
|
funeqd |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ∅ ) ) ) |
| 65 |
41 58 64
|
3bitr4d |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 66 |
65
|
a1d |
⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 67 |
|
df-nel |
⊢ ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 68 |
67
|
bicomi |
⊢ ( ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 69 |
68
|
anbi2i |
⊢ ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 70 |
|
trliswlk |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 71 |
3 10
|
sylib |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 72 |
|
fzonel |
⊢ ¬ ( ♯ ‘ 𝐹 ) ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) |
| 73 |
72
|
a1i |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ¬ ( ♯ ‘ 𝐹 ) ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 74 |
71 73
|
eldifd |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ( ( 0 ... ( ♯ ‘ 𝐹 ) ) ∖ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 75 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
| 76 |
|
fzoss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 77 |
75 76
|
mp1i |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 78 |
|
fzossfz |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
| 79 |
77 78
|
sstrdi |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 80 |
5 74 79
|
3jca |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( ( 0 ... ( ♯ ‘ 𝐹 ) ) ∖ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 81 |
|
resf1ext2b |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( ( 0 ... ( ♯ ‘ 𝐹 ) ) ∖ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) ) ) |
| 82 |
70 80 81
|
3syl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) ) ) |
| 83 |
69 82
|
bitrid |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) ) ) |
| 84 |
83
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) ) ) |
| 85 |
|
elnnne0 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ≠ 0 ) ) |
| 86 |
|
elnnuz |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ ↔ ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 87 |
85 86
|
sylbb1 |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ≠ 0 ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 88 |
87
|
ex |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) ≠ 0 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) ) ) |
| 89 |
70 3 88
|
3syl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( ♯ ‘ 𝐹 ) ≠ 0 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) ) ) |
| 90 |
89
|
impcom |
⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 91 |
|
fzisfzounsn |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( ♯ ‘ 𝐹 ) ) = ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) |
| 92 |
90 91
|
syl |
⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( 1 ... ( ♯ ‘ 𝐹 ) ) = ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) |
| 93 |
92
|
eqcomd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) = ( 1 ... ( ♯ ‘ 𝐹 ) ) ) |
| 94 |
93
|
reseq2d |
⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) = ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 95 |
94
|
cnveqd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ◡ ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) = ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 96 |
95
|
funeqd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( Fun ◡ ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 97 |
84 96
|
bitrd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 98 |
97
|
ex |
⊢ ( ( ♯ ‘ 𝐹 ) ≠ 0 → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 99 |
66 98
|
pm2.61ine |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 100 |
99
|
anbi1d |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ ( Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 101 |
34 37 100
|
3bitrd |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ↔ ( Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 102 |
101
|
pm5.32i |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 103 |
|
3anass |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ) |
| 104 |
|
3anass |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 105 |
102 103 104
|
3bitr4i |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 106 |
1 105
|
bitri |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |