Metamath Proof Explorer


Theorem dfrab2

Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003) (Proof shortened by BJ, 22-Apr-2019)

Ref Expression
Assertion dfrab2 { 𝑥𝐴𝜑 } = ( { 𝑥𝜑 } ∩ 𝐴 )

Proof

Step Hyp Ref Expression
1 dfrab3 { 𝑥𝐴𝜑 } = ( 𝐴 ∩ { 𝑥𝜑 } )
2 incom ( 𝐴 ∩ { 𝑥𝜑 } ) = ( { 𝑥𝜑 } ∩ 𝐴 )
3 1 2 eqtri { 𝑥𝐴𝜑 } = ( { 𝑥𝜑 } ∩ 𝐴 )