Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003) (Proof shortened by BJ, 22-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrab2 | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ( { 𝑥 ∣ 𝜑 } ∩ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrab3 | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) | |
2 | incom | ⊢ ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) = ( { 𝑥 ∣ 𝜑 } ∩ 𝐴 ) | |
3 | 1 2 | eqtri | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ( { 𝑥 ∣ 𝜑 } ∩ 𝐴 ) |