Metamath Proof Explorer


Theorem dfrab3

Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion dfrab3 { 𝑥𝐴𝜑 } = ( 𝐴 ∩ { 𝑥𝜑 } )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
2 inab ( { 𝑥𝑥𝐴 } ∩ { 𝑥𝜑 } ) = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
3 abid2 { 𝑥𝑥𝐴 } = 𝐴
4 3 ineq1i ( { 𝑥𝑥𝐴 } ∩ { 𝑥𝜑 } ) = ( 𝐴 ∩ { 𝑥𝜑 } )
5 1 2 4 3eqtr2i { 𝑥𝐴𝜑 } = ( 𝐴 ∩ { 𝑥𝜑 } )