| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfss2 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∩  𝐵 )  =  𝐴 ) | 
						
							| 2 |  | ineq1 | ⊢ ( ( 𝐴  ∩  𝐵 )  =  𝐴  →  ( ( 𝐴  ∩  𝐵 )  ∩  { 𝑥  ∣  𝜑 } )  =  ( 𝐴  ∩  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 3 | 2 | eqcomd | ⊢ ( ( 𝐴  ∩  𝐵 )  =  𝐴  →  ( 𝐴  ∩  { 𝑥  ∣  𝜑 } )  =  ( ( 𝐴  ∩  𝐵 )  ∩  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 4 | 1 3 | sylbi | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝐴  ∩  { 𝑥  ∣  𝜑 } )  =  ( ( 𝐴  ∩  𝐵 )  ∩  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 5 |  | dfrab3 | ⊢ { 𝑥  ∈  𝐴  ∣  𝜑 }  =  ( 𝐴  ∩  { 𝑥  ∣  𝜑 } ) | 
						
							| 6 |  | dfrab3 | ⊢ { 𝑥  ∈  𝐵  ∣  𝜑 }  =  ( 𝐵  ∩  { 𝑥  ∣  𝜑 } ) | 
						
							| 7 | 6 | ineq2i | ⊢ ( 𝐴  ∩  { 𝑥  ∈  𝐵  ∣  𝜑 } )  =  ( 𝐴  ∩  ( 𝐵  ∩  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 8 |  | inass | ⊢ ( ( 𝐴  ∩  𝐵 )  ∩  { 𝑥  ∣  𝜑 } )  =  ( 𝐴  ∩  ( 𝐵  ∩  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 9 | 7 8 | eqtr4i | ⊢ ( 𝐴  ∩  { 𝑥  ∈  𝐵  ∣  𝜑 } )  =  ( ( 𝐴  ∩  𝐵 )  ∩  { 𝑥  ∣  𝜑 } ) | 
						
							| 10 | 4 5 9 | 3eqtr4g | ⊢ ( 𝐴  ⊆  𝐵  →  { 𝑥  ∈  𝐴  ∣  𝜑 }  =  ( 𝐴  ∩  { 𝑥  ∈  𝐵  ∣  𝜑 } ) ) |