Step |
Hyp |
Ref |
Expression |
1 |
|
df-ss |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
2 |
|
ineq1 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐴 → ( ( 𝐴 ∩ 𝐵 ) ∩ { 𝑥 ∣ 𝜑 } ) = ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) ) |
3 |
2
|
eqcomd |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐴 → ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) = ( ( 𝐴 ∩ 𝐵 ) ∩ { 𝑥 ∣ 𝜑 } ) ) |
4 |
1 3
|
sylbi |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) = ( ( 𝐴 ∩ 𝐵 ) ∩ { 𝑥 ∣ 𝜑 } ) ) |
5 |
|
dfrab3 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) |
6 |
|
dfrab3 |
⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = ( 𝐵 ∩ { 𝑥 ∣ 𝜑 } ) |
7 |
6
|
ineq2i |
⊢ ( 𝐴 ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) = ( 𝐴 ∩ ( 𝐵 ∩ { 𝑥 ∣ 𝜑 } ) ) |
8 |
|
inass |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ { 𝑥 ∣ 𝜑 } ) = ( 𝐴 ∩ ( 𝐵 ∩ { 𝑥 ∣ 𝜑 } ) ) |
9 |
7 8
|
eqtr4i |
⊢ ( 𝐴 ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) = ( ( 𝐴 ∩ 𝐵 ) ∩ { 𝑥 ∣ 𝜑 } ) |
10 |
4 5 9
|
3eqtr4g |
⊢ ( 𝐴 ⊆ 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ( 𝐴 ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) ) |