Metamath Proof Explorer


Theorem dfrab3ss

Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015) (Proof shortened by Mario Carneiro, 8-Nov-2015)

Ref Expression
Assertion dfrab3ss ( 𝐴𝐵 → { 𝑥𝐴𝜑 } = ( 𝐴 ∩ { 𝑥𝐵𝜑 } ) )

Proof

Step Hyp Ref Expression
1 df-ss ( 𝐴𝐵 ↔ ( 𝐴𝐵 ) = 𝐴 )
2 ineq1 ( ( 𝐴𝐵 ) = 𝐴 → ( ( 𝐴𝐵 ) ∩ { 𝑥𝜑 } ) = ( 𝐴 ∩ { 𝑥𝜑 } ) )
3 2 eqcomd ( ( 𝐴𝐵 ) = 𝐴 → ( 𝐴 ∩ { 𝑥𝜑 } ) = ( ( 𝐴𝐵 ) ∩ { 𝑥𝜑 } ) )
4 1 3 sylbi ( 𝐴𝐵 → ( 𝐴 ∩ { 𝑥𝜑 } ) = ( ( 𝐴𝐵 ) ∩ { 𝑥𝜑 } ) )
5 dfrab3 { 𝑥𝐴𝜑 } = ( 𝐴 ∩ { 𝑥𝜑 } )
6 dfrab3 { 𝑥𝐵𝜑 } = ( 𝐵 ∩ { 𝑥𝜑 } )
7 6 ineq2i ( 𝐴 ∩ { 𝑥𝐵𝜑 } ) = ( 𝐴 ∩ ( 𝐵 ∩ { 𝑥𝜑 } ) )
8 inass ( ( 𝐴𝐵 ) ∩ { 𝑥𝜑 } ) = ( 𝐴 ∩ ( 𝐵 ∩ { 𝑥𝜑 } ) )
9 7 8 eqtr4i ( 𝐴 ∩ { 𝑥𝐵𝜑 } ) = ( ( 𝐴𝐵 ) ∩ { 𝑥𝜑 } )
10 4 5 9 3eqtr4g ( 𝐴𝐵 → { 𝑥𝐴𝜑 } = ( 𝐴 ∩ { 𝑥𝐵𝜑 } ) )