Metamath Proof Explorer


Theorem dfral2

Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) Allow shortening of rexnal . (Revised by Wolf Lammen, 9-Dec-2019)

Ref Expression
Assertion dfral2 ( ∀ 𝑥𝐴 𝜑 ↔ ¬ ∃ 𝑥𝐴 ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 notnotb ( 𝜑 ↔ ¬ ¬ 𝜑 )
2 1 ralbii ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 ¬ ¬ 𝜑 )
3 ralnex ( ∀ 𝑥𝐴 ¬ ¬ 𝜑 ↔ ¬ ∃ 𝑥𝐴 ¬ 𝜑 )
4 2 3 bitri ( ∀ 𝑥𝐴 𝜑 ↔ ¬ ∃ 𝑥𝐴 ¬ 𝜑 )