| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-recs | ⊢ recs ( 𝐹 )  =  wrecs (  E  ,  On ,  𝐹 ) | 
						
							| 2 |  | dfwrecsOLD | ⊢ wrecs (  E  ,  On ,  𝐹 )  =  ∪  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) ) } | 
						
							| 3 |  | 3anass | ⊢ ( ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) )  ↔  ( 𝑓  Fn  𝑥  ∧  ( ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) ) ) ) | 
						
							| 4 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 5 | 4 | elon | ⊢ ( 𝑥  ∈  On  ↔  Ord  𝑥 ) | 
						
							| 6 |  | ordsson | ⊢ ( Ord  𝑥  →  𝑥  ⊆  On ) | 
						
							| 7 |  | ordtr | ⊢ ( Ord  𝑥  →  Tr  𝑥 ) | 
						
							| 8 | 6 7 | jca | ⊢ ( Ord  𝑥  →  ( 𝑥  ⊆  On  ∧  Tr  𝑥 ) ) | 
						
							| 9 |  | epweon | ⊢  E   We  On | 
						
							| 10 |  | wess | ⊢ ( 𝑥  ⊆  On  →  (  E   We  On  →   E   We  𝑥 ) ) | 
						
							| 11 | 9 10 | mpi | ⊢ ( 𝑥  ⊆  On  →   E   We  𝑥 ) | 
						
							| 12 | 11 | anim1ci | ⊢ ( ( 𝑥  ⊆  On  ∧  Tr  𝑥 )  →  ( Tr  𝑥  ∧   E   We  𝑥 ) ) | 
						
							| 13 |  | df-ord | ⊢ ( Ord  𝑥  ↔  ( Tr  𝑥  ∧   E   We  𝑥 ) ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( ( 𝑥  ⊆  On  ∧  Tr  𝑥 )  →  Ord  𝑥 ) | 
						
							| 15 | 8 14 | impbii | ⊢ ( Ord  𝑥  ↔  ( 𝑥  ⊆  On  ∧  Tr  𝑥 ) ) | 
						
							| 16 |  | dftr3 | ⊢ ( Tr  𝑥  ↔  ∀ 𝑦  ∈  𝑥 𝑦  ⊆  𝑥 ) | 
						
							| 17 |  | ssel2 | ⊢ ( ( 𝑥  ⊆  On  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  On ) | 
						
							| 18 |  | predon | ⊢ ( 𝑦  ∈  On  →  Pred (  E  ,  On ,  𝑦 )  =  𝑦 ) | 
						
							| 19 | 18 | sseq1d | ⊢ ( 𝑦  ∈  On  →  ( Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥  ↔  𝑦  ⊆  𝑥 ) ) | 
						
							| 20 | 17 19 | syl | ⊢ ( ( 𝑥  ⊆  On  ∧  𝑦  ∈  𝑥 )  →  ( Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥  ↔  𝑦  ⊆  𝑥 ) ) | 
						
							| 21 | 20 | ralbidva | ⊢ ( 𝑥  ⊆  On  →  ( ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥  ↔  ∀ 𝑦  ∈  𝑥 𝑦  ⊆  𝑥 ) ) | 
						
							| 22 | 16 21 | bitr4id | ⊢ ( 𝑥  ⊆  On  →  ( Tr  𝑥  ↔  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 ) ) | 
						
							| 23 | 22 | pm5.32i | ⊢ ( ( 𝑥  ⊆  On  ∧  Tr  𝑥 )  ↔  ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 ) ) | 
						
							| 24 | 5 15 23 | 3bitri | ⊢ ( 𝑥  ∈  On  ↔  ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 ) ) | 
						
							| 25 | 24 | anbi1i | ⊢ ( ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) )  ↔  ( ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) ) ) | 
						
							| 26 |  | onelon | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  On ) | 
						
							| 27 | 18 | reseq2d | ⊢ ( 𝑦  ∈  On  →  ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) )  =  ( 𝑓  ↾  𝑦 ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( 𝑦  ∈  On  →  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( 𝑦  ∈  On  →  ( ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) )  ↔  ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) ) | 
						
							| 30 | 26 29 | syl | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 )  →  ( ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) )  ↔  ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) ) | 
						
							| 31 | 30 | ralbidva | ⊢ ( 𝑥  ∈  On  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) ) | 
						
							| 32 | 31 | pm5.32i | ⊢ ( ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) )  ↔  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) ) | 
						
							| 33 | 25 32 | bitr3i | ⊢ ( ( ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) )  ↔  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) ) | 
						
							| 34 | 33 | anbi2i | ⊢ ( ( 𝑓  Fn  𝑥  ∧  ( ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) ) )  ↔  ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) ) ) | 
						
							| 35 |  | an12 | ⊢ ( ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ∈  On  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) )  ↔  ( 𝑥  ∈  On  ∧  ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) ) ) | 
						
							| 36 | 3 34 35 | 3bitri | ⊢ ( ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) )  ↔  ( 𝑥  ∈  On  ∧  ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) ) ) | 
						
							| 37 | 36 | exbii | ⊢ ( ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  On  ∧  ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) ) ) | 
						
							| 38 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  On  ∧  ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) ) ) | 
						
							| 39 | 37 38 | bitr4i | ⊢ ( ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) )  ↔  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) ) | 
						
							| 40 | 39 | abbii | ⊢ { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) ) }  =  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) } | 
						
							| 41 | 40 | unieqi | ⊢ ∪  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  On  ∧  ∀ 𝑦  ∈  𝑥 Pred (  E  ,  On ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred (  E  ,  On ,  𝑦 ) ) ) ) }  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) } | 
						
							| 42 | 1 2 41 | 3eqtri | ⊢ recs ( 𝐹 )  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) } |