Metamath Proof Explorer


Theorem dfrefrel5

Description: Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 12-Dec-2023)

Ref Expression
Assertion dfrefrel5 ( RefRel 𝑅 ↔ ( ∀ 𝑥 ∈ ( dom 𝑅 ∩ ran 𝑅 ) 𝑥 𝑅 𝑥 ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 dfrefrel2 ( RefRel 𝑅 ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) )
2 ref5 ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ ( dom 𝑅 ∩ ran 𝑅 ) 𝑥 𝑅 𝑥 )
3 1 2 bianbi ( RefRel 𝑅 ↔ ( ∀ 𝑥 ∈ ( dom 𝑅 ∩ ran 𝑅 ) 𝑥 𝑅 𝑥 ∧ Rel 𝑅 ) )