Description: Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 12-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrefrel5 | ⊢ ( RefRel 𝑅 ↔ ( ∀ 𝑥 ∈ ( dom 𝑅 ∩ ran 𝑅 ) 𝑥 𝑅 𝑥 ∧ Rel 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrefrel2 | ⊢ ( RefRel 𝑅 ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) | |
2 | ref5 | ⊢ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ ( dom 𝑅 ∩ ran 𝑅 ) 𝑥 𝑅 𝑥 ) | |
3 | 1 2 | bianbi | ⊢ ( RefRel 𝑅 ↔ ( ∀ 𝑥 ∈ ( dom 𝑅 ∩ ran 𝑅 ) 𝑥 𝑅 𝑥 ∧ Rel 𝑅 ) ) |