Description: Alternate definition of relation. Exercise 2 of TakeutiZaring p. 25. (Contributed by NM, 29-Dec-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ⊢ Rel ◡ ◡ 𝑅 | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | opelcnv | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ ◡ 𝑅 ↔ 〈 𝑦 , 𝑥 〉 ∈ ◡ 𝑅 ) |
| 5 | 3 2 | opelcnv | ⊢ ( 〈 𝑦 , 𝑥 〉 ∈ ◡ 𝑅 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
| 6 | 4 5 | bitri | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ ◡ 𝑅 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
| 7 | 6 | eqrelriv | ⊢ ( ( Rel ◡ ◡ 𝑅 ∧ Rel 𝑅 ) → ◡ ◡ 𝑅 = 𝑅 ) |
| 8 | 1 7 | mpan | ⊢ ( Rel 𝑅 → ◡ ◡ 𝑅 = 𝑅 ) |
| 9 | releq | ⊢ ( ◡ ◡ 𝑅 = 𝑅 → ( Rel ◡ ◡ 𝑅 ↔ Rel 𝑅 ) ) | |
| 10 | 1 9 | mpbii | ⊢ ( ◡ ◡ 𝑅 = 𝑅 → Rel 𝑅 ) |
| 11 | 8 10 | impbii | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) |