Metamath Proof Explorer


Theorem dfrel3

Description: Alternate definition of relation. (Contributed by NM, 14-May-2008)

Ref Expression
Assertion dfrel3 ( Rel 𝑅 ↔ ( 𝑅 ↾ V ) = 𝑅 )

Proof

Step Hyp Ref Expression
1 dfrel2 ( Rel 𝑅 𝑅 = 𝑅 )
2 cnvcnv2 𝑅 = ( 𝑅 ↾ V )
3 2 eqeq1i ( 𝑅 = 𝑅 ↔ ( 𝑅 ↾ V ) = 𝑅 )
4 1 3 bitri ( Rel 𝑅 ↔ ( 𝑅 ↾ V ) = 𝑅 )