Description: Alternate definition of relation. (Contributed by NM, 14-May-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrel3 | ⊢ ( Rel 𝑅 ↔ ( 𝑅 ↾ V ) = 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) | |
| 2 | cnvcnv2 | ⊢ ◡ ◡ 𝑅 = ( 𝑅 ↾ V ) | |
| 3 | 2 | eqeq1i | ⊢ ( ◡ ◡ 𝑅 = 𝑅 ↔ ( 𝑅 ↾ V ) = 𝑅 ) |
| 4 | 1 3 | bitri | ⊢ ( Rel 𝑅 ↔ ( 𝑅 ↾ V ) = 𝑅 ) |