Metamath Proof Explorer


Theorem dfrel4

Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 for relations. (Contributed by Mario Carneiro, 16-Aug-2015) (Revised by Thierry Arnoux, 11-May-2017)

Ref Expression
Hypotheses dfrel4.1 𝑥 𝑅
dfrel4.2 𝑦 𝑅
Assertion dfrel4 ( Rel 𝑅𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } )

Proof

Step Hyp Ref Expression
1 dfrel4.1 𝑥 𝑅
2 dfrel4.2 𝑦 𝑅
3 dfrel4v ( Rel 𝑅𝑅 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ 𝑎 𝑅 𝑏 } )
4 nfcv 𝑥 𝑎
5 nfcv 𝑥 𝑏
6 4 1 5 nfbr 𝑥 𝑎 𝑅 𝑏
7 nfcv 𝑦 𝑎
8 nfcv 𝑦 𝑏
9 7 2 8 nfbr 𝑦 𝑎 𝑅 𝑏
10 nfv 𝑎 𝑥 𝑅 𝑦
11 nfv 𝑏 𝑥 𝑅 𝑦
12 breq12 ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 𝑎 𝑅 𝑏𝑥 𝑅 𝑦 ) )
13 6 9 10 11 12 cbvopab { ⟨ 𝑎 , 𝑏 ⟩ ∣ 𝑎 𝑅 𝑏 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 }
14 13 eqeq2i ( 𝑅 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ 𝑎 𝑅 𝑏 } ↔ 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } )
15 3 14 bitri ( Rel 𝑅𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } )