Step |
Hyp |
Ref |
Expression |
1 |
|
df-res |
⊢ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) ) |
2 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ 𝐴 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) ) |
3 |
|
vex |
⊢ 𝑧 ∈ V |
4 |
3
|
biantru |
⊢ ( 𝑦 ∈ 𝐵 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ) |
5 |
|
vex |
⊢ 𝑦 ∈ V |
6 |
5 3
|
opelrn |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 → 𝑧 ∈ ran 𝐴 ) |
7 |
6
|
biantrud |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) |
8 |
4 7
|
bitr3id |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) |
9 |
2 8
|
syl6bi |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) ) |
10 |
9
|
com12 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) ) |
11 |
10
|
pm5.32d |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) ) |
12 |
11
|
2exbidv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) ) |
13 |
|
elxp |
⊢ ( 𝑥 ∈ ( 𝐵 × V ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ V ) ) ) |
14 |
|
elxp |
⊢ ( 𝑥 ∈ ( 𝐵 × ran 𝐴 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ran 𝐴 ) ) ) |
15 |
12 13 14
|
3bitr4g |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐵 × V ) ↔ 𝑥 ∈ ( 𝐵 × ran 𝐴 ) ) ) |
16 |
15
|
pm5.32i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × V ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × ran 𝐴 ) ) ) |
17 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × ran 𝐴 ) ) ) |
18 |
16 17
|
bitr4i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 × V ) ) ↔ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) ) |
19 |
18
|
ineqri |
⊢ ( 𝐴 ∩ ( 𝐵 × V ) ) = ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) |
20 |
1 19
|
eqtri |
⊢ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 × ran 𝐴 ) ) |