Step |
Hyp |
Ref |
Expression |
1 |
|
df-rnghom |
⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
2 |
|
ancom |
⊢ ( ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) |
3 |
|
r19.26-2 |
⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
4 |
3
|
anbi1i |
⊢ ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ↔ ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) |
5 |
|
anass |
⊢ ( ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) |
6 |
2 4 5
|
3bitri |
⊢ ( ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) |
7 |
6
|
rabbii |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } = { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) } |
8 |
|
fvex |
⊢ ( Base ‘ 𝑟 ) ∈ V |
9 |
|
fvex |
⊢ ( Base ‘ 𝑠 ) ∈ V |
10 |
|
oveq12 |
⊢ ( ( 𝑤 = ( Base ‘ 𝑠 ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑤 ↑m 𝑣 ) = ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝑣 = ( Base ‘ 𝑟 ) ∧ 𝑤 = ( Base ‘ 𝑠 ) ) → ( 𝑤 ↑m 𝑣 ) = ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ) |
12 |
|
raleq |
⊢ ( 𝑣 = ( Base ‘ 𝑟 ) → ( ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
13 |
12
|
raleqbi1dv |
⊢ ( 𝑣 = ( Base ‘ 𝑟 ) → ( ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑣 = ( Base ‘ 𝑟 ) ∧ 𝑤 = ( Base ‘ 𝑠 ) ) → ( ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
15 |
14
|
anbi2d |
⊢ ( ( 𝑣 = ( Base ‘ 𝑟 ) ∧ 𝑤 = ( Base ‘ 𝑠 ) ) → ( ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
16 |
11 15
|
rabeqbidv |
⊢ ( ( 𝑣 = ( Base ‘ 𝑟 ) ∧ 𝑤 = ( Base ‘ 𝑠 ) ) → { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } = { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
17 |
8 9 16
|
csbie2 |
⊢ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } = { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } |
18 |
|
inrab |
⊢ ( { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) } ∩ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } ) = { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) } |
19 |
7 17 18
|
3eqtr4i |
⊢ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } = ( { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) } ∩ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } ) |
20 |
|
ringgrp |
⊢ ( 𝑟 ∈ Ring → 𝑟 ∈ Grp ) |
21 |
|
ringgrp |
⊢ ( 𝑠 ∈ Ring → 𝑠 ∈ Grp ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑟 ) = ( Base ‘ 𝑟 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑠 ) = ( Base ‘ 𝑠 ) |
24 |
|
eqid |
⊢ ( +g ‘ 𝑟 ) = ( +g ‘ 𝑟 ) |
25 |
|
eqid |
⊢ ( +g ‘ 𝑠 ) = ( +g ‘ 𝑠 ) |
26 |
22 23 24 25
|
isghm3 |
⊢ ( ( 𝑟 ∈ Grp ∧ 𝑠 ∈ Grp ) → ( 𝑓 ∈ ( 𝑟 GrpHom 𝑠 ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
27 |
20 21 26
|
syl2an |
⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( 𝑓 ∈ ( 𝑟 GrpHom 𝑠 ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
28 |
27
|
abbi2dv |
⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( 𝑟 GrpHom 𝑠 ) = { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
29 |
|
df-rab |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∣ ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
30 |
9 8
|
elmap |
⊢ ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ↔ 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ) |
31 |
30
|
anbi1i |
⊢ ( ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
32 |
31
|
abbii |
⊢ { 𝑓 ∣ ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
33 |
29 32
|
eqtri |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
34 |
28 33
|
eqtr4di |
⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( 𝑟 GrpHom 𝑠 ) = { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) } ) |
35 |
|
eqid |
⊢ ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑟 ) |
36 |
35
|
ringmgp |
⊢ ( 𝑟 ∈ Ring → ( mulGrp ‘ 𝑟 ) ∈ Mnd ) |
37 |
|
eqid |
⊢ ( mulGrp ‘ 𝑠 ) = ( mulGrp ‘ 𝑠 ) |
38 |
37
|
ringmgp |
⊢ ( 𝑠 ∈ Ring → ( mulGrp ‘ 𝑠 ) ∈ Mnd ) |
39 |
35 22
|
mgpbas |
⊢ ( Base ‘ 𝑟 ) = ( Base ‘ ( mulGrp ‘ 𝑟 ) ) |
40 |
37 23
|
mgpbas |
⊢ ( Base ‘ 𝑠 ) = ( Base ‘ ( mulGrp ‘ 𝑠 ) ) |
41 |
|
eqid |
⊢ ( .r ‘ 𝑟 ) = ( .r ‘ 𝑟 ) |
42 |
35 41
|
mgpplusg |
⊢ ( .r ‘ 𝑟 ) = ( +g ‘ ( mulGrp ‘ 𝑟 ) ) |
43 |
|
eqid |
⊢ ( .r ‘ 𝑠 ) = ( .r ‘ 𝑠 ) |
44 |
37 43
|
mgpplusg |
⊢ ( .r ‘ 𝑠 ) = ( +g ‘ ( mulGrp ‘ 𝑠 ) ) |
45 |
|
eqid |
⊢ ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑟 ) |
46 |
35 45
|
ringidval |
⊢ ( 1r ‘ 𝑟 ) = ( 0g ‘ ( mulGrp ‘ 𝑟 ) ) |
47 |
|
eqid |
⊢ ( 1r ‘ 𝑠 ) = ( 1r ‘ 𝑠 ) |
48 |
37 47
|
ringidval |
⊢ ( 1r ‘ 𝑠 ) = ( 0g ‘ ( mulGrp ‘ 𝑠 ) ) |
49 |
39 40 42 44 46 48
|
ismhm |
⊢ ( 𝑓 ∈ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ↔ ( ( ( mulGrp ‘ 𝑟 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑠 ) ∈ Mnd ) ∧ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) |
50 |
49
|
baib |
⊢ ( ( ( mulGrp ‘ 𝑟 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑠 ) ∈ Mnd ) → ( 𝑓 ∈ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) |
51 |
36 38 50
|
syl2an |
⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( 𝑓 ∈ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) |
52 |
51
|
abbi2dv |
⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) = { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } ) |
53 |
|
df-rab |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } = { 𝑓 ∣ ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) } |
54 |
30
|
anbi1i |
⊢ ( ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) |
55 |
|
3anass |
⊢ ( ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) |
56 |
54 55
|
bitr4i |
⊢ ( ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) |
57 |
56
|
abbii |
⊢ { 𝑓 ∣ ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) } = { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } |
58 |
53 57
|
eqtri |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } = { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } |
59 |
52 58
|
eqtr4di |
⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) = { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } ) |
60 |
34 59
|
ineq12d |
⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) = ( { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) } ∩ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } ) ) |
61 |
19 60
|
eqtr4id |
⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } = ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) |
62 |
61
|
mpoeq3ia |
⊢ ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) |
63 |
1 62
|
eqtri |
⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) |