Metamath Proof Explorer


Theorem dfrn2

Description: Alternate definition of range. Definition 4 of Suppes p. 60. (Contributed by NM, 27-Dec-1996)

Ref Expression
Assertion dfrn2 ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 }

Proof

Step Hyp Ref Expression
1 df-rn ran 𝐴 = dom 𝐴
2 df-dm dom 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑦 𝐴 𝑥 }
3 vex 𝑦 ∈ V
4 vex 𝑥 ∈ V
5 3 4 brcnv ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑦 )
6 5 exbii ( ∃ 𝑥 𝑦 𝐴 𝑥 ↔ ∃ 𝑥 𝑥 𝐴 𝑦 )
7 6 abbii { 𝑦 ∣ ∃ 𝑥 𝑦 𝐴 𝑥 } = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 }
8 1 2 7 3eqtri ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 }