Metamath Proof Explorer


Theorem dfrn3

Description: Alternate definition of range. Definition 6.5(2) of TakeutiZaring p. 24. (Contributed by NM, 28-Dec-1996)

Ref Expression
Assertion dfrn3 ran 𝐴 = { 𝑦 ∣ ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐴 }

Proof

Step Hyp Ref Expression
1 dfrn2 ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 }
2 df-br ( 𝑥 𝐴 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 )
3 2 exbii ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐴 )
4 3 abbii { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = { 𝑦 ∣ ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐴 }
5 1 4 eqtri ran 𝐴 = { 𝑦 ∣ ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐴 }