Step |
Hyp |
Ref |
Expression |
1 |
|
dfrnf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
dfrnf.2 |
⊢ Ⅎ 𝑦 𝐴 |
3 |
|
dfrn2 |
⊢ ran 𝐴 = { 𝑤 ∣ ∃ 𝑣 𝑣 𝐴 𝑤 } |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑣 |
5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
6 |
4 1 5
|
nfbr |
⊢ Ⅎ 𝑥 𝑣 𝐴 𝑤 |
7 |
|
nfv |
⊢ Ⅎ 𝑣 𝑥 𝐴 𝑤 |
8 |
|
breq1 |
⊢ ( 𝑣 = 𝑥 → ( 𝑣 𝐴 𝑤 ↔ 𝑥 𝐴 𝑤 ) ) |
9 |
6 7 8
|
cbvexv1 |
⊢ ( ∃ 𝑣 𝑣 𝐴 𝑤 ↔ ∃ 𝑥 𝑥 𝐴 𝑤 ) |
10 |
9
|
abbii |
⊢ { 𝑤 ∣ ∃ 𝑣 𝑣 𝐴 𝑤 } = { 𝑤 ∣ ∃ 𝑥 𝑥 𝐴 𝑤 } |
11 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑥 |
12 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑤 |
13 |
11 2 12
|
nfbr |
⊢ Ⅎ 𝑦 𝑥 𝐴 𝑤 |
14 |
13
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑥 𝑥 𝐴 𝑤 |
15 |
|
nfv |
⊢ Ⅎ 𝑤 ∃ 𝑥 𝑥 𝐴 𝑦 |
16 |
|
breq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 𝐴 𝑤 ↔ 𝑥 𝐴 𝑦 ) ) |
17 |
16
|
exbidv |
⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑥 𝑥 𝐴 𝑤 ↔ ∃ 𝑥 𝑥 𝐴 𝑦 ) ) |
18 |
14 15 17
|
cbvabw |
⊢ { 𝑤 ∣ ∃ 𝑥 𝑥 𝐴 𝑤 } = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } |
19 |
3 10 18
|
3eqtri |
⊢ ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } |