Step |
Hyp |
Ref |
Expression |
1 |
|
sbequ2 |
⊢ ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ) |
2 |
1
|
com12 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝑥 = 𝑦 → 𝜑 ) ) |
3 |
|
sb1 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
4 |
2 3
|
jca |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ( ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
5 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
6 |
|
sbequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
7 |
5 6
|
embantd |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = 𝑦 → 𝜑 ) → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
8 |
7
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝑥 = 𝑦 → 𝜑 ) → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
9 |
8
|
adantrd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
10 |
|
sb3 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
11 |
10
|
adantld |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ( ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
12 |
9 11
|
pm2.61i |
⊢ ( ( ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) → [ 𝑦 / 𝑥 ] 𝜑 ) |
13 |
4 12
|
impbii |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ( ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |