Metamath Proof Explorer


Theorem dfsdom2

Description: Alternate definition of strict dominance. Compare Definition 3 of Suppes p. 97. (Contributed by NM, 31-Mar-1998)

Ref Expression
Assertion dfsdom2 ≺ = ( ≼ ∖ ≼ )

Proof

Step Hyp Ref Expression
1 df-sdom ≺ = ( ≼ ∖ ≈ )
2 sbthcl ≈ = ( ≼ ∩ ≼ )
3 2 difeq2i ( ≼ ∖ ≈ ) = ( ≼ ∖ ( ≼ ∩ ≼ ) )
4 difin ( ≼ ∖ ( ≼ ∩ ≼ ) ) = ( ≼ ∖ ≼ )
5 1 3 4 3eqtri ≺ = ( ≼ ∖ ≼ )