Metamath Proof Explorer


Theorem dfse2

Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015)

Ref Expression
Assertion dfse2 ( 𝑅 Se 𝐴 ↔ ∀ 𝑥𝐴 ( 𝐴 ∩ ( 𝑅 “ { 𝑥 } ) ) ∈ V )

Proof

Step Hyp Ref Expression
1 df-se ( 𝑅 Se 𝐴 ↔ ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V )
2 dfrab3 { 𝑦𝐴𝑦 𝑅 𝑥 } = ( 𝐴 ∩ { 𝑦𝑦 𝑅 𝑥 } )
3 iniseg ( 𝑥 ∈ V → ( 𝑅 “ { 𝑥 } ) = { 𝑦𝑦 𝑅 𝑥 } )
4 3 elv ( 𝑅 “ { 𝑥 } ) = { 𝑦𝑦 𝑅 𝑥 }
5 4 ineq2i ( 𝐴 ∩ ( 𝑅 “ { 𝑥 } ) ) = ( 𝐴 ∩ { 𝑦𝑦 𝑅 𝑥 } )
6 2 5 eqtr4i { 𝑦𝐴𝑦 𝑅 𝑥 } = ( 𝐴 ∩ ( 𝑅 “ { 𝑥 } ) )
7 6 eleq1i ( { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V ↔ ( 𝐴 ∩ ( 𝑅 “ { 𝑥 } ) ) ∈ V )
8 7 ralbii ( ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V ↔ ∀ 𝑥𝐴 ( 𝐴 ∩ ( 𝑅 “ { 𝑥 } ) ) ∈ V )
9 1 8 bitri ( 𝑅 Se 𝐴 ↔ ∀ 𝑥𝐴 ( 𝐴 ∩ ( 𝑅 “ { 𝑥 } ) ) ∈ V )