Step |
Hyp |
Ref |
Expression |
1 |
|
df-smo |
⊢ ( Smo 𝐹 ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
2 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
3 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑦 ∈ dom 𝐹 → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
4 |
|
simpr |
⊢ ( ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
5 |
|
ordtr1 |
⊢ ( Ord dom 𝐹 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝐹 ) → 𝑦 ∈ dom 𝐹 ) ) |
6 |
5
|
3impib |
⊢ ( ( Ord dom 𝐹 ∧ 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝐹 ) → 𝑦 ∈ dom 𝐹 ) |
7 |
6
|
3com23 |
⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ dom 𝐹 ) |
8 |
|
simp3 |
⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
9 |
7 8
|
jca |
⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) ) |
10 |
9
|
3expia |
⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑦 ∈ 𝑥 → ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) ) ) |
11 |
4 10
|
impbid2 |
⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) ↔ 𝑦 ∈ 𝑥 ) ) |
12 |
11
|
imbi1d |
⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
13 |
3 12
|
bitr3id |
⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝑦 ∈ dom 𝐹 → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
14 |
13
|
ralbidv2 |
⊢ ( ( Ord dom 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ∀ 𝑦 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
15 |
14
|
ralbidva |
⊢ ( Ord dom 𝐹 → ( ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
16 |
2 15
|
syl5bb |
⊢ ( Ord dom 𝐹 → ( ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
16
|
pm5.32i |
⊢ ( ( Ord dom 𝐹 ∧ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
18 |
17
|
anbi2i |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ On ∧ ( Ord dom 𝐹 ∧ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ ( Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
19 |
|
3anass |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ ( Ord dom 𝐹 ∧ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
20 |
|
3anass |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ ( Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
21 |
18 19 20
|
3bitr4i |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑦 ∈ dom 𝐹 ∀ 𝑥 ∈ dom 𝐹 ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
22 |
1 21
|
bitri |
⊢ ( Smo 𝐹 ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |