Metamath Proof Explorer


Theorem dfsn2

Description: Alternate definition of singleton. Definition 5.1 of TakeutiZaring p. 15. (Contributed by NM, 24-Apr-1994)

Ref Expression
Assertion dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }

Proof

Step Hyp Ref Expression
1 df-pr { 𝐴 , 𝐴 } = ( { 𝐴 } ∪ { 𝐴 } )
2 unidm ( { 𝐴 } ∪ { 𝐴 } ) = { 𝐴 }
3 1 2 eqtr2i { 𝐴 } = { 𝐴 , 𝐴 }