Description: Variant of subclass definition dfss2 . (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ 𝐴 = ( 𝐴 ∩ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) | |
| 2 | eqcom | ⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐴 ↔ 𝐴 = ( 𝐴 ∩ 𝐵 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝐴 ⊆ 𝐵 ↔ 𝐴 = ( 𝐴 ∩ 𝐵 ) ) |