Metamath Proof Explorer


Theorem dfss2

Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of TakeutiZaring p. 17. (Contributed by NM, 8-Jan-2002) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 16-May-2024)

Ref Expression
Assertion dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfcleq ( 𝐴 = ( 𝐴𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝐴𝐵 ) ) )
2 dfss ( 𝐴𝐵𝐴 = ( 𝐴𝐵 ) )
3 pm4.71 ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑥𝐴 ↔ ( 𝑥𝐴𝑥𝐵 ) ) )
4 elin ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
5 4 bibi2i ( ( 𝑥𝐴𝑥 ∈ ( 𝐴𝐵 ) ) ↔ ( 𝑥𝐴 ↔ ( 𝑥𝐴𝑥𝐵 ) ) )
6 3 5 bitr4i ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑥𝐴𝑥 ∈ ( 𝐴𝐵 ) ) )
7 6 albii ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝐴𝐵 ) ) )
8 1 2 7 3bitr4i ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )