Metamath Proof Explorer


Theorem dfss3

Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999)

Ref Expression
Assertion dfss3 ( 𝐴𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )

Proof

Step Hyp Ref Expression
1 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
2 df-ral ( ∀ 𝑥𝐴 𝑥𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
3 1 2 bitr4i ( 𝐴𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )