Metamath Proof Explorer


Theorem dfss3f

Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004)

Ref Expression
Hypotheses dfss2f.1 𝑥 𝐴
dfss2f.2 𝑥 𝐵
Assertion dfss3f ( 𝐴𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )

Proof

Step Hyp Ref Expression
1 dfss2f.1 𝑥 𝐴
2 dfss2f.2 𝑥 𝐵
3 1 2 dfss2f ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
4 df-ral ( ∀ 𝑥𝐴 𝑥𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
5 3 4 bitr4i ( 𝐴𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )