Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
dfss3f
Metamath Proof Explorer
Description: Equivalence for subclass relation, using bound-variable hypotheses
instead of distinct variable conditions. (Contributed by NM , 20-Mar-2004)
Ref
Expression
Hypotheses
dfssf.1
⊢ Ⅎ 𝑥 𝐴
dfssf.2
⊢ Ⅎ 𝑥 𝐵
Assertion
dfss3f
⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
dfssf.1
⊢ Ⅎ 𝑥 𝐴
2
dfssf.2
⊢ Ⅎ 𝑥 𝐵
3
1 2
dfssf
⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) )
4
df-ral
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) )
5
3 4
bitr4i
⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 )