Metamath Proof Explorer


Theorem dfss4

Description: Subclass defined in terms of class difference. See comments under dfun2 . (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion dfss4 ( 𝐴𝐵 ↔ ( 𝐵 ∖ ( 𝐵𝐴 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 sseqin2 ( 𝐴𝐵 ↔ ( 𝐵𝐴 ) = 𝐴 )
2 eldif ( 𝑥 ∈ ( 𝐵𝐴 ) ↔ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
3 2 notbii ( ¬ 𝑥 ∈ ( 𝐵𝐴 ) ↔ ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
4 3 anbi2i ( ( 𝑥𝐵 ∧ ¬ 𝑥 ∈ ( 𝐵𝐴 ) ) ↔ ( 𝑥𝐵 ∧ ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) ) )
5 elin ( 𝑥 ∈ ( 𝐵𝐴 ) ↔ ( 𝑥𝐵𝑥𝐴 ) )
6 abai ( ( 𝑥𝐵𝑥𝐴 ) ↔ ( 𝑥𝐵 ∧ ( 𝑥𝐵𝑥𝐴 ) ) )
7 iman ( ( 𝑥𝐵𝑥𝐴 ) ↔ ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) )
8 7 anbi2i ( ( 𝑥𝐵 ∧ ( 𝑥𝐵𝑥𝐴 ) ) ↔ ( 𝑥𝐵 ∧ ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) ) )
9 5 6 8 3bitri ( 𝑥 ∈ ( 𝐵𝐴 ) ↔ ( 𝑥𝐵 ∧ ¬ ( 𝑥𝐵 ∧ ¬ 𝑥𝐴 ) ) )
10 4 9 bitr4i ( ( 𝑥𝐵 ∧ ¬ 𝑥 ∈ ( 𝐵𝐴 ) ) ↔ 𝑥 ∈ ( 𝐵𝐴 ) )
11 10 difeqri ( 𝐵 ∖ ( 𝐵𝐴 ) ) = ( 𝐵𝐴 )
12 11 eqeq1i ( ( 𝐵 ∖ ( 𝐵𝐴 ) ) = 𝐴 ↔ ( 𝐵𝐴 ) = 𝐴 )
13 1 12 bitr4i ( 𝐴𝐵 ↔ ( 𝐵 ∖ ( 𝐵𝐴 ) ) = 𝐴 )