Metamath Proof Explorer


Theorem dfss6

Description: Alternate definition of subclass relationship. (Contributed by RP, 16-Apr-2020)

Ref Expression
Assertion dfss6 ( 𝐴𝐵 ↔ ¬ ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
2 notnotb ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ↔ ¬ ¬ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
3 1 2 bitri ( 𝐴𝐵 ↔ ¬ ¬ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
4 exanali ( ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ↔ ¬ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
5 3 4 xchbinxr ( 𝐴𝐵 ↔ ¬ ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )