Description: Alternate definition of subclass relationship. (Contributed by RP, 16-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfss6 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 2 | notnotb | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ¬ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ¬ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 4 | exanali | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 5 | 3 4 | xchbinxr | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |