Description: Alternate definition of subclass relationship. (Contributed by RP, 16-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dfss6 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
2 | notnotb | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ¬ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
3 | 1 2 | bitri | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ¬ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
4 | exanali | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
5 | 3 4 | xchbinxr | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |