Metamath Proof Explorer
Description: Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020)
|
|
Ref |
Expression |
|
Assertion |
dfsymdif2 |
⊢ ( 𝐴 △ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵 ) } |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elsymdifxor |
⊢ ( 𝑥 ∈ ( 𝐴 △ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵 ) ) |
2 |
1
|
abbi2i |
⊢ ( 𝐴 △ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵 ) } |