Metamath Proof Explorer


Theorem dfsymdif2

Description: Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020)

Ref Expression
Assertion dfsymdif2 ( 𝐴𝐵 ) = { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) }

Proof

Step Hyp Ref Expression
1 elsymdifxor ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
2 1 abbi2i ( 𝐴𝐵 ) = { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) }