Metamath Proof Explorer


Theorem dfsymdif3

Description: Alternate definition of the symmetric difference, given in Example 4.1 of Stoll p. 262 (the original definition corresponds to Stoll p. 13). (Contributed by NM, 17-Aug-2004) (Revised by BJ, 30-Apr-2020)

Ref Expression
Assertion dfsymdif3 ( 𝐴𝐵 ) = ( ( 𝐴𝐵 ) ∖ ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 difin ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )
2 incom ( 𝐴𝐵 ) = ( 𝐵𝐴 )
3 2 difeq2i ( 𝐵 ∖ ( 𝐴𝐵 ) ) = ( 𝐵 ∖ ( 𝐵𝐴 ) )
4 difin ( 𝐵 ∖ ( 𝐵𝐴 ) ) = ( 𝐵𝐴 )
5 3 4 eqtri ( 𝐵 ∖ ( 𝐴𝐵 ) ) = ( 𝐵𝐴 )
6 1 5 uneq12i ( ( 𝐴 ∖ ( 𝐴𝐵 ) ) ∪ ( 𝐵 ∖ ( 𝐴𝐵 ) ) ) = ( ( 𝐴𝐵 ) ∪ ( 𝐵𝐴 ) )
7 difundir ( ( 𝐴𝐵 ) ∖ ( 𝐴𝐵 ) ) = ( ( 𝐴 ∖ ( 𝐴𝐵 ) ) ∪ ( 𝐵 ∖ ( 𝐴𝐵 ) ) )
8 df-symdif ( 𝐴𝐵 ) = ( ( 𝐴𝐵 ) ∪ ( 𝐵𝐴 ) )
9 6 7 8 3eqtr4ri ( 𝐴𝐵 ) = ( ( 𝐴𝐵 ) ∖ ( 𝐴𝐵 ) )