Step |
Hyp |
Ref |
Expression |
1 |
|
difin |
⊢ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) |
2 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
3 |
2
|
difeq2i |
⊢ ( 𝐵 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐵 ∖ ( 𝐵 ∩ 𝐴 ) ) |
4 |
|
difin |
⊢ ( 𝐵 ∖ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐵 ∖ 𝐴 ) |
5 |
3 4
|
eqtri |
⊢ ( 𝐵 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐵 ∖ 𝐴 ) |
6 |
1 5
|
uneq12i |
⊢ ( ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐵 ∖ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
7 |
|
difundir |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∖ ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐵 ∖ ( 𝐴 ∩ 𝐵 ) ) ) |
8 |
|
df-symdif |
⊢ ( 𝐴 △ 𝐵 ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
9 |
6 7 8
|
3eqtr4ri |
⊢ ( 𝐴 △ 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∖ ( 𝐴 ∩ 𝐵 ) ) |