| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difin | ⊢ ( 𝐴  ∖  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐴  ∖  𝐵 ) | 
						
							| 2 |  | incom | ⊢ ( 𝐴  ∩  𝐵 )  =  ( 𝐵  ∩  𝐴 ) | 
						
							| 3 | 2 | difeq2i | ⊢ ( 𝐵  ∖  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐵  ∖  ( 𝐵  ∩  𝐴 ) ) | 
						
							| 4 |  | difin | ⊢ ( 𝐵  ∖  ( 𝐵  ∩  𝐴 ) )  =  ( 𝐵  ∖  𝐴 ) | 
						
							| 5 | 3 4 | eqtri | ⊢ ( 𝐵  ∖  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐵  ∖  𝐴 ) | 
						
							| 6 | 1 5 | uneq12i | ⊢ ( ( 𝐴  ∖  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐵  ∖  ( 𝐴  ∩  𝐵 ) ) )  =  ( ( 𝐴  ∖  𝐵 )  ∪  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 7 |  | difundir | ⊢ ( ( 𝐴  ∪  𝐵 )  ∖  ( 𝐴  ∩  𝐵 ) )  =  ( ( 𝐴  ∖  ( 𝐴  ∩  𝐵 ) )  ∪  ( 𝐵  ∖  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 8 |  | df-symdif | ⊢ ( 𝐴  △  𝐵 )  =  ( ( 𝐴  ∖  𝐵 )  ∪  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 9 | 6 7 8 | 3eqtr4ri | ⊢ ( 𝐴  △  𝐵 )  =  ( ( 𝐴  ∪  𝐵 )  ∖  ( 𝐴  ∩  𝐵 ) ) |