Metamath Proof Explorer
Description: Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004) (Revised by AV, 17-Aug-2022)
|
|
Ref |
Expression |
|
Assertion |
dfsymdif4 |
⊢ ( 𝐴 △ 𝐵 ) = { 𝑥 ∣ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) } |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elsymdif |
⊢ ( 𝑥 ∈ ( 𝐴 △ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
2 |
1
|
abbi2i |
⊢ ( 𝐴 △ 𝐵 ) = { 𝑥 ∣ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) } |