Metamath Proof Explorer


Theorem dfsymdif4

Description: Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004) (Revised by AV, 17-Aug-2022)

Ref Expression
Assertion dfsymdif4 ( 𝐴𝐵 ) = { 𝑥 ∣ ¬ ( 𝑥𝐴𝑥𝐵 ) }

Proof

Step Hyp Ref Expression
1 elsymdif ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ¬ ( 𝑥𝐴𝑥𝐵 ) )
2 1 abbi2i ( 𝐴𝐵 ) = { 𝑥 ∣ ¬ ( 𝑥𝐴𝑥𝐵 ) }