| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-symrels | 
							⊢  SymRels   =  (  Syms   ∩   Rels  )  | 
						
						
							| 2 | 
							
								
							 | 
							df-syms | 
							⊢  Syms   =  { 𝑟  ∣  ◡ ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  S  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) ) }  | 
						
						
							| 3 | 
							
								
							 | 
							inex1g | 
							⊢ ( 𝑟  ∈  V  →  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ∈  V )  | 
						
						
							| 4 | 
							
								3
							 | 
							elv | 
							⊢ ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ∈  V  | 
						
						
							| 5 | 
							
								
							 | 
							brssr | 
							⊢ ( ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ∈  V  →  ( ◡ ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  S  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ↔  ◡ ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							ax-mp | 
							⊢ ( ◡ ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  S  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ↔  ◡ ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							elrels6 | 
							⊢ ( 𝑟  ∈  V  →  ( 𝑟  ∈   Rels   ↔  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  =  𝑟 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							elv | 
							⊢ ( 𝑟  ∈   Rels   ↔  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  =  𝑟 )  | 
						
						
							| 9 | 
							
								8
							 | 
							biimpi | 
							⊢ ( 𝑟  ∈   Rels   →  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  =  𝑟 )  | 
						
						
							| 10 | 
							
								9
							 | 
							cnveqd | 
							⊢ ( 𝑟  ∈   Rels   →  ◡ ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  =  ◡ 𝑟 )  | 
						
						
							| 11 | 
							
								10 9
							 | 
							sseq12d | 
							⊢ ( 𝑟  ∈   Rels   →  ( ◡ ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ↔  ◡ 𝑟  ⊆  𝑟 ) )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							bitrid | 
							⊢ ( 𝑟  ∈   Rels   →  ( ◡ ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  S  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ↔  ◡ 𝑟  ⊆  𝑟 ) )  | 
						
						
							| 13 | 
							
								1 2 12
							 | 
							abeqinbi | 
							⊢  SymRels   =  { 𝑟  ∈   Rels   ∣  ◡ 𝑟  ⊆  𝑟 }  |