Metamath Proof Explorer


Theorem dftermc3

Description: Alternate definition of TermCat . See also df-termc , dftermc2 . (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion dftermc3 TermCat = { 𝑐 ∣ ( Arrow ‘ 𝑐 ) ≈ 1o }

Proof

Step Hyp Ref Expression
1 termcarweu ( 𝑐 ∈ TermCat → ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝑐 ) )
2 arweutermc ( ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝑐 ) → 𝑐 ∈ TermCat )
3 1 2 impbii ( 𝑐 ∈ TermCat ↔ ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝑐 ) )
4 euen1b ( ( Arrow ‘ 𝑐 ) ≈ 1o ↔ ∃! 𝑎 𝑎 ∈ ( Arrow ‘ 𝑐 ) )
5 3 4 bitr4i ( 𝑐 ∈ TermCat ↔ ( Arrow ‘ 𝑐 ) ≈ 1o )
6 5 eqabi TermCat = { 𝑐 ∣ ( Arrow ‘ 𝑐 ) ≈ 1o }