Metamath Proof Explorer


Theorem dftp2

Description: Alternate definition of unordered triple of classes. Special case of Definition 5.3 of TakeutiZaring p. 16. (Contributed by NM, 8-Apr-1994)

Ref Expression
Assertion dftp2 { 𝐴 , 𝐵 , 𝐶 } = { 𝑥 ∣ ( 𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶 ) }

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 eltp ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶 ) )
3 2 abbi2i { 𝐴 , 𝐵 , 𝐶 } = { 𝑥 ∣ ( 𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶 ) }