| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmtpos | ⊢ ( Rel  dom  𝐹  →  dom  tpos  𝐹  =  ◡ dom  𝐹 ) | 
						
							| 2 | 1 | reseq2d | ⊢ ( Rel  dom  𝐹  →  ( tpos  𝐹  ↾  dom  tpos  𝐹 )  =  ( tpos  𝐹  ↾  ◡ dom  𝐹 ) ) | 
						
							| 3 |  | reltpos | ⊢ Rel  tpos  𝐹 | 
						
							| 4 |  | resdm | ⊢ ( Rel  tpos  𝐹  →  ( tpos  𝐹  ↾  dom  tpos  𝐹 )  =  tpos  𝐹 ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( tpos  𝐹  ↾  dom  tpos  𝐹 )  =  tpos  𝐹 | 
						
							| 6 |  | df-tpos | ⊢ tpos  𝐹  =  ( 𝐹  ∘  ( 𝑥  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ↦  ∪  ◡ { 𝑥 } ) ) | 
						
							| 7 | 6 | reseq1i | ⊢ ( tpos  𝐹  ↾  ◡ dom  𝐹 )  =  ( ( 𝐹  ∘  ( 𝑥  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ↦  ∪  ◡ { 𝑥 } ) )  ↾  ◡ dom  𝐹 ) | 
						
							| 8 |  | resco | ⊢ ( ( 𝐹  ∘  ( 𝑥  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ↦  ∪  ◡ { 𝑥 } ) )  ↾  ◡ dom  𝐹 )  =  ( 𝐹  ∘  ( ( 𝑥  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ↦  ∪  ◡ { 𝑥 } )  ↾  ◡ dom  𝐹 ) ) | 
						
							| 9 |  | ssun1 | ⊢ ◡ dom  𝐹  ⊆  ( ◡ dom  𝐹  ∪  { ∅ } ) | 
						
							| 10 |  | resmpt | ⊢ ( ◡ dom  𝐹  ⊆  ( ◡ dom  𝐹  ∪  { ∅ } )  →  ( ( 𝑥  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ↦  ∪  ◡ { 𝑥 } )  ↾  ◡ dom  𝐹 )  =  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( ( 𝑥  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ↦  ∪  ◡ { 𝑥 } )  ↾  ◡ dom  𝐹 )  =  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) | 
						
							| 12 | 11 | coeq2i | ⊢ ( 𝐹  ∘  ( ( 𝑥  ∈  ( ◡ dom  𝐹  ∪  { ∅ } )  ↦  ∪  ◡ { 𝑥 } )  ↾  ◡ dom  𝐹 ) )  =  ( 𝐹  ∘  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) ) | 
						
							| 13 | 7 8 12 | 3eqtri | ⊢ ( tpos  𝐹  ↾  ◡ dom  𝐹 )  =  ( 𝐹  ∘  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) ) | 
						
							| 14 | 2 5 13 | 3eqtr3g | ⊢ ( Rel  dom  𝐹  →  tpos  𝐹  =  ( 𝐹  ∘  ( 𝑥  ∈  ◡ dom  𝐹  ↦  ∪  ◡ { 𝑥 } ) ) ) |