Metamath Proof Explorer


Theorem dftr2

Description: An alternate way of defining a transitive class. Exercise 7 of TakeutiZaring p. 40. (Contributed by NM, 24-Apr-1994)

Ref Expression
Assertion dftr2 ( Tr 𝐴 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 dfss2 ( 𝐴𝐴 ↔ ∀ 𝑥 ( 𝑥 𝐴𝑥𝐴 ) )
2 df-tr ( Tr 𝐴 𝐴𝐴 )
3 19.23v ( ∀ 𝑦 ( ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) )
4 eluni ( 𝑥 𝐴 ↔ ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) )
5 4 imbi1i ( ( 𝑥 𝐴𝑥𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) )
6 3 5 bitr4i ( ∀ 𝑦 ( ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) ↔ ( 𝑥 𝐴𝑥𝐴 ) )
7 6 albii ( ∀ 𝑥𝑦 ( ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) ↔ ∀ 𝑥 ( 𝑥 𝐴𝑥𝐴 ) )
8 1 2 7 3bitr4i ( Tr 𝐴 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝑦𝑦𝐴 ) → 𝑥𝐴 ) )