Step |
Hyp |
Ref |
Expression |
1 |
|
dfss2 |
⊢ ( ∪ 𝐴 ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
2 |
|
df-tr |
⊢ ( Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴 ) |
3 |
|
19.23v |
⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
4 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) |
5 |
4
|
imbi1i |
⊢ ( ( 𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
6 |
3 5
|
bitr4i |
⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
8 |
1 2 7
|
3bitr4i |
⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |