Metamath Proof Explorer


Theorem dftr3

Description: An alternate way of defining a transitive class. Definition 7.1 of TakeutiZaring p. 35. (Contributed by NM, 29-Aug-1993)

Ref Expression
Assertion dftr3 ( Tr 𝐴 ↔ ∀ 𝑥𝐴 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 dftr5 ( Tr 𝐴 ↔ ∀ 𝑥𝐴𝑦𝑥 𝑦𝐴 )
2 dfss3 ( 𝑥𝐴 ↔ ∀ 𝑦𝑥 𝑦𝐴 )
3 2 ralbii ( ∀ 𝑥𝐴 𝑥𝐴 ↔ ∀ 𝑥𝐴𝑦𝑥 𝑦𝐴 )
4 1 3 bitr4i ( Tr 𝐴 ↔ ∀ 𝑥𝐴 𝑥𝐴 )