Description: An alternate way of defining a transitive class. Definition 7.1 of TakeutiZaring p. 35. (Contributed by NM, 29-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | dftr3 | ⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr5 | ⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) | |
2 | dfss3 | ⊢ ( 𝑥 ⊆ 𝐴 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) | |
3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) |
4 | 1 3 | bitr4i | ⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 ) |