Metamath Proof Explorer


Theorem dftr4

Description: An alternate way of defining a transitive class. Definition of Enderton p. 71. (Contributed by NM, 29-Aug-1993)

Ref Expression
Assertion dftr4 ( Tr 𝐴𝐴 ⊆ 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 df-tr ( Tr 𝐴 𝐴𝐴 )
2 sspwuni ( 𝐴 ⊆ 𝒫 𝐴 𝐴𝐴 )
3 1 2 bitr4i ( Tr 𝐴𝐴 ⊆ 𝒫 𝐴 )