Step |
Hyp |
Ref |
Expression |
1 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
2 |
1
|
albii |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
3 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
4 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) ) |
5 |
2 3 4
|
3bitr2i |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) ) |
6 |
5
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) ) |
7 |
|
dftr2c |
⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) |
8 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) ) |
9 |
6 7 8
|
3bitr4i |
⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) |