| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dftr2 |
⊢ ( Tr 𝐴 ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) |
| 2 |
|
alcom |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) |
| 3 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
| 4 |
3
|
albii |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
| 5 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
| 6 |
4 5
|
bitr4i |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) |
| 7 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) ) |
| 8 |
6 7
|
bitri |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) ) |
| 9 |
8
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) ) |
| 10 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) ) |
| 11 |
9 10
|
bitr4i |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) |
| 12 |
2 11
|
bitri |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) |
| 13 |
1 12
|
bitri |
⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ) |