| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-trrel | 
							⊢ (  TrRel  𝑅  ↔  ( ( ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) )  ∘  ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) ) )  ⊆  ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) )  ∧  Rel  𝑅 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dfrel6 | 
							⊢ ( Rel  𝑅  ↔  ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) )  =  𝑅 )  | 
						
						
							| 3 | 
							
								2
							 | 
							biimpi | 
							⊢ ( Rel  𝑅  →  ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) )  =  𝑅 )  | 
						
						
							| 4 | 
							
								3 3
							 | 
							coeq12d | 
							⊢ ( Rel  𝑅  →  ( ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) )  ∘  ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) ) )  =  ( 𝑅  ∘  𝑅 ) )  | 
						
						
							| 5 | 
							
								4 3
							 | 
							sseq12d | 
							⊢ ( Rel  𝑅  →  ( ( ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) )  ∘  ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) ) )  ⊆  ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) )  ↔  ( 𝑅  ∘  𝑅 )  ⊆  𝑅 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							pm5.32ri | 
							⊢ ( ( ( ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) )  ∘  ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) ) )  ⊆  ( 𝑅  ∩  ( dom  𝑅  ×  ran  𝑅 ) )  ∧  Rel  𝑅 )  ↔  ( ( 𝑅  ∘  𝑅 )  ⊆  𝑅  ∧  Rel  𝑅 ) )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							bitri | 
							⊢ (  TrRel  𝑅  ↔  ( ( 𝑅  ∘  𝑅 )  ⊆  𝑅  ∧  Rel  𝑅 ) )  |