Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
|
eldif |
⊢ ( 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
3 |
1 2
|
mpbiran |
⊢ ( 𝑥 ∈ ( V ∖ 𝐴 ) ↔ ¬ 𝑥 ∈ 𝐴 ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝑥 ∈ ( V ∖ 𝐴 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ( ¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
5 |
|
eldif |
⊢ ( 𝑥 ∈ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) ↔ ( 𝑥 ∈ ( V ∖ 𝐴 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
6 |
|
ioran |
⊢ ( ¬ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ↔ ( ¬ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
7 |
4 5 6
|
3bitr4i |
⊢ ( 𝑥 ∈ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
8 |
7
|
con2bii |
⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ↔ ¬ 𝑥 ∈ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) ) |
9 |
|
eldif |
⊢ ( 𝑥 ∈ ( V ∖ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) ) ) |
10 |
1 9
|
mpbiran |
⊢ ( 𝑥 ∈ ( V ∖ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) ) ↔ ¬ 𝑥 ∈ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) ) |
11 |
8 10
|
bitr4i |
⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ( V ∖ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) ) ) |
12 |
11
|
uneqri |
⊢ ( 𝐴 ∪ 𝐵 ) = ( V ∖ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) ) |