Description: Union defined in terms of intersection (De Morgan's law). Definition of union in Mendelson p. 231. (Contributed by NM, 8-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfun3 | ⊢ ( 𝐴 ∪ 𝐵 ) = ( V ∖ ( ( V ∖ 𝐴 ) ∩ ( V ∖ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfun2 | ⊢ ( 𝐴 ∪ 𝐵 ) = ( V ∖ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) ) | |
| 2 | dfin2 | ⊢ ( ( V ∖ 𝐴 ) ∩ ( V ∖ 𝐵 ) ) = ( ( V ∖ 𝐴 ) ∖ ( V ∖ ( V ∖ 𝐵 ) ) ) | |
| 3 | ddif | ⊢ ( V ∖ ( V ∖ 𝐵 ) ) = 𝐵 | |
| 4 | 3 | difeq2i | ⊢ ( ( V ∖ 𝐴 ) ∖ ( V ∖ ( V ∖ 𝐵 ) ) ) = ( ( V ∖ 𝐴 ) ∖ 𝐵 ) |
| 5 | 2 4 | eqtr2i | ⊢ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) = ( ( V ∖ 𝐴 ) ∩ ( V ∖ 𝐵 ) ) |
| 6 | 5 | difeq2i | ⊢ ( V ∖ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) ) = ( V ∖ ( ( V ∖ 𝐴 ) ∩ ( V ∖ 𝐵 ) ) ) |
| 7 | 1 6 | eqtri | ⊢ ( 𝐴 ∪ 𝐵 ) = ( V ∖ ( ( V ∖ 𝐴 ) ∩ ( V ∖ 𝐵 ) ) ) |