Metamath Proof Explorer


Theorem dfun3

Description: Union defined in terms of intersection (De Morgan's law). Definition of union in Mendelson p. 231. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion dfun3 ( 𝐴𝐵 ) = ( V ∖ ( ( V ∖ 𝐴 ) ∩ ( V ∖ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 dfun2 ( 𝐴𝐵 ) = ( V ∖ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) )
2 dfin2 ( ( V ∖ 𝐴 ) ∩ ( V ∖ 𝐵 ) ) = ( ( V ∖ 𝐴 ) ∖ ( V ∖ ( V ∖ 𝐵 ) ) )
3 ddif ( V ∖ ( V ∖ 𝐵 ) ) = 𝐵
4 3 difeq2i ( ( V ∖ 𝐴 ) ∖ ( V ∖ ( V ∖ 𝐵 ) ) ) = ( ( V ∖ 𝐴 ) ∖ 𝐵 )
5 2 4 eqtr2i ( ( V ∖ 𝐴 ) ∖ 𝐵 ) = ( ( V ∖ 𝐴 ) ∩ ( V ∖ 𝐵 ) )
6 5 difeq2i ( V ∖ ( ( V ∖ 𝐴 ) ∖ 𝐵 ) ) = ( V ∖ ( ( V ∖ 𝐴 ) ∩ ( V ∖ 𝐵 ) ) )
7 1 6 eqtri ( 𝐴𝐵 ) = ( V ∖ ( ( V ∖ 𝐴 ) ∩ ( V ∖ 𝐵 ) ) )