Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfuni2 | ⊢ ∪ 𝐴 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-uni | ⊢ ∪ 𝐴 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } | |
| 2 | exancom | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ) | |
| 3 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ) | |
| 4 | 2 3 | bitr4i | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
| 5 | 4 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 } |
| 6 | 1 5 | eqtri | ⊢ ∪ 𝐴 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 } |