Metamath Proof Explorer


Theorem dfuni2

Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998)

Ref Expression
Assertion dfuni2 𝐴 = { 𝑥 ∣ ∃ 𝑦𝐴 𝑥𝑦 }

Proof

Step Hyp Ref Expression
1 df-uni 𝐴 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) }
2 exancom ( ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) ↔ ∃ 𝑦 ( 𝑦𝐴𝑥𝑦 ) )
3 df-rex ( ∃ 𝑦𝐴 𝑥𝑦 ↔ ∃ 𝑦 ( 𝑦𝐴𝑥𝑦 ) )
4 2 3 bitr4i ( ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) ↔ ∃ 𝑦𝐴 𝑥𝑦 )
5 4 abbii { 𝑥 ∣ ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) } = { 𝑥 ∣ ∃ 𝑦𝐴 𝑥𝑦 }
6 1 5 eqtri 𝐴 = { 𝑥 ∣ ∃ 𝑦𝐴 𝑥𝑦 }