Description: Alternate definition of class union. (Contributed by NM, 28-Jun-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | dfuni2 | ⊢ ∪ 𝐴 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-uni | ⊢ ∪ 𝐴 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } | |
2 | exancom | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ) | |
3 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ) | |
4 | 2 3 | bitr4i | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
5 | 4 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 } |
6 | 1 5 | eqtri | ⊢ ∪ 𝐴 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 } |