Metamath Proof Explorer


Theorem dfur2

Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses dfur2.b 𝐵 = ( Base ‘ 𝑅 )
dfur2.t · = ( .r𝑅 )
dfur2.u 1 = ( 1r𝑅 )
Assertion dfur2 1 = ( ℩ 𝑒 ( 𝑒𝐵 ∧ ∀ 𝑥𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 dfur2.b 𝐵 = ( Base ‘ 𝑅 )
2 dfur2.t · = ( .r𝑅 )
3 dfur2.u 1 = ( 1r𝑅 )
4 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
5 4 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
6 4 2 mgpplusg · = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
7 4 3 ringidval 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) )
8 5 6 7 grpidval 1 = ( ℩ 𝑒 ( 𝑒𝐵 ∧ ∀ 𝑥𝐵 ( ( 𝑒 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑒 ) = 𝑥 ) ) )