Metamath Proof Explorer


Theorem dfvd1imp

Description: Left-to-right part of definition of virtual deduction. (Contributed by Alan Sare, 21-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dfvd1imp ( (    𝜑    ▶    𝜓    ) → ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 df-vd1 ( (    𝜑    ▶    𝜓    ) ↔ ( 𝜑𝜓 ) )
2 1 biimpi ( (    𝜑    ▶    𝜓    ) → ( 𝜑𝜓 ) )