Metamath Proof Explorer


Theorem dfvd2

Description: Definition of a 2-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dfvd2 ( (    𝜑    ,    𝜓    ▶    𝜒    ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 df-vd2 ( (    𝜑    ,    𝜓    ▶    𝜒    ) ↔ ( ( 𝜑𝜓 ) → 𝜒 ) )
2 impexp ( ( ( 𝜑𝜓 ) → 𝜒 ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) )
3 1 2 bitri ( (    𝜑    ,    𝜓    ▶    𝜒    ) ↔ ( 𝜑 → ( 𝜓𝜒 ) ) )